Форум
» Назад на решение задач по физике и термеху
Регистрация | Профиль | Войти | Забытый пароль | Присутствующие | Справка | Поиск

» Добро пожаловать, Гость: Войти | Регистрация
    Форум
    Математика
        Решение задач по теории вероятности
Отметить все сообщения как прочитанные   [ Помощь ]
» Добро пожаловать на форум "Математика" «

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 ]
Модераторы: Roman Osipov, RKI, attention, paradise
  

Elenkaaa



Новичок

помогите пожалуйста у меня экзамен,определить вероятность попадания при одном выстреле,если с вероятностью,равной 0,8, при четырех выстрелах было 2 попадания

Всего сообщений: 5 | Присоединился: октябрь 2009 | Отправлено: 26 окт. 2009 17:05 | IP
RKI



Долгожитель


Цитата: Slanderous написал 26 окт. 2009 15:43

Плотность вероятности случайной величины Х равна
f(x) = a*(x)^2  * e^-kx. k>0. 0<=x<+бесконечности.
Найти коэффициент "а", F(x), P(0<x<1\k)
Заранее спасибо





Если x <= 0, то


Если x > 0, то




















F(x) = {1 - (1/2)((k^2)(x^2) + 2kx + 2)(e^(-kx)), x > 0
         {0, x <= 0




Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 26 окт. 2009 17:18 | IP
taaraass



Новичок

Большое спасибо вам RKI за решение задач. Вы просто супер.
Я очень вам благодарен!!!!!

(Сообщение отредактировал taaraass 26 окт. 2009 17:45)

Всего сообщений: 6 | Присоединился: октябрь 2009 | Отправлено: 26 окт. 2009 17:44 | IP
taaraass



Новичок

уважемый(я) не могли бы вы просто проверить правильности решения задачи.
Вероятность попадания в мишень для 1, 2, 3 спортсмена равна 0,9; 0,6; 0,8. Каждый спортсмен делает 1 выстрел. Найти вероятность того, что в мишени будет ровно 1 пробоина?

Решение:
А1={1 спортсмен попал в мишень}
А2={2 спортсмен попал в мишень}
А3={3 спортсмен попал в мишень}

Р(А1)=0,9
Р(А2)=0,6
Р(А3)=08

В=в мишени только 1 пробоина
Р(В)=Р(А1)*Р(А\Н1)+Р(А2)*Р(А\Н2)+Р(А3)*Р(А\Н3)

Р(А\Н1)=1-0,9=0,1
Р(А\Н1)=1-0,6=0,4
Р(А\Н1)=1-0,8=0,2

Р(В)=0,9*0,1+0,4*0,6+0,2*0,8=0,49

Всего сообщений: 6 | Присоединился: октябрь 2009 | Отправлено: 26 окт. 2009 18:58 | IP
Sun Summer



Новичок


Цитата: RKI написал 26 окт. 2009 9:38

Цитата: Sun Summer написал 26 окт. 2009 5:27
Задача: Случайная величина X распределена нормально с математическим ожиданием а= 10 и средним квадратическим отклонением
. Найти интервал, в который с вероятностью 0,9973 попадет X в результате испытания.



Решение: Вероятность того, что абсолютная величина отклонения меньше положительного числа , вычисляется по формуле
. В нашем случае , откуда по таблице значений функции получаем, что ,
, то есть
Значит интервал имеет вид






Задачка сложноватая. Скажите, правильно ли она решена? и если да, то объясните, пожалуйста, откуда взялась эта формула ? Лапласа по другому выглядит, эту же нигде не нашёл, кучу учебников перерыл



Задача решена правильно.

Пусть случайная величина X распределена нормально с параметрами a (математическое ожидание) и (среднее квадратическое отклонение).

Известно, что функция распределения случайной величины X имеет вид:


Тогда


Также известно, что функция Лапласа является нечетной, то есть



Следовательно,









RKI, спасибо! А скажите, пожалуйста, мне вывод этой формулы нужно расписывать в решении задачи? или же можно использовать как готовую, типа препод поймёт но с другой стороны нигде её не видел

Всего сообщений: 16 | Присоединился: октябрь 2009 | Отправлено: 26 окт. 2009 19:03 | IP
taaraass



Новичок

Подскажите пожалуйста. В решении задачи
В ящике есть 10 шаров з номерами 1,2,3,4,5,6,7,8,9,10. Наудачу вынимают5 шаров. Какая вероятность того что среди вытянутых шаров найдут шары з номерами 7 и 8.

Мы Посчитаем число m исходов, благоприятных событию A.
Способов вытащить 7 из имеющейся одной семерки: m1 = 1.
Способов вытащить 8 из имеющейся одной восьмерки: m2 = 1.
Способов вытащить еще 3 цифры из 8 оставшихся:
m3 = C(3;8) = 8!/3!5! = 56.

так вот почему мы берём 3 цифры из 8 оставшихся, а  например не 2, 4 или 5)))
Подскажите, а то я что то не понял.

ДА ИЗВИИТЕ ЗА БЕСПОКОЙСТВО, ЗАРАНИЕ СПАСИБО.

Всего сообщений: 6 | Присоединился: октябрь 2009 | Отправлено: 26 окт. 2009 19:04 | IP
RKI



Долгожитель


Цитата: taaraass написал 26 окт. 2009 18:58

Вероятность попадания в мишень для 1, 2, 3 спортсмена равна 0,9; 0,6; 0,8. Каждый спортсмен делает 1 выстрел. Найти вероятность того, что в мишени будет ровно 1 пробоина?



Ai = {i-тый стрелок попал в мишень}, i=1,2,3
P(A1) = 0.9
P(A2) = 0.6
P(A3) = 0.8

не Ai = {i-тый стрелок промахнется}, i=1,2,3
P(не A1) = 1 - P(A1) = 1 - 0.9 = 0.1
P(не A2) = 1 - P(A2) = 1 - 0.6 = 0.4
P(не A3) = 1 - P(A3) = 1 - 0.8 = 0.2

A = {только одна пробоина}
A = A1*(не A2)*(не A3) + (не A1)*A2*(не A3) + (не A1)*(не A2)*A3

P(A) =
= P(A1*(не A2)*(не A3) + (не A1)*A2*(не A3) + (не A1)*(не A2)*A3) =
= P(A1*(не A2)*(не A3)) + P((не A1)*A2*(не A3)) + P((не A1)*(не A2)*A3)) =
=  P(A1)*P(не A2)*P(не A3) + P(не A1)*P(A2)*P(не A3) + P(не A1)*P(не A2)*P(A3) =
= (0.9)*(0.4)*(0.2) + (0.1)*(0.6)*(0.2) + (0.1)*(0.4)*(0.8) =
= 0.072 + 0.012 + 0.032 = 0.116

P.S. Я - это она

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 26 окт. 2009 19:06 | IP
RKI



Долгожитель


Цитата: Sun Summer написал 26 окт. 2009 19:03

RKI, спасибо! А скажите, пожалуйста, мне вывод этой формулы нужно расписывать в решении задачи? или же можно использовать как готовую, типа препод поймёт но с другой стороны нигде её не видел



Я думаю, вывод данной формулы расписывать ни к чему.
Это очень известные в теории вероятностей формулы, тем более для преподавателя.

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 26 окт. 2009 19:08 | IP
RKI



Долгожитель


Цитата: taaraass написал 26 окт. 2009 19:04

Мы Посчитаем число m исходов, благоприятных событию A.
Способов вытащить 7 из имеющейся одной семерки: m1 = 1.
Способов вытащить 8 из имеющейся одной восьмерки: m2 = 1.
Способов вытащить еще 3 цифры из 8 оставшихся:
m3 = C(3;8) = 8!/3!5! = 56.

так вот почему мы берём 3 цифры из 8 оставшихся, а  например не 2, 4 или 5)))
Подскажите, а то я что то не понял.



Всего выбирается 5 цифр из 10 имеющихся: 1, 2, 3, ..., 10.
Цифры 7 и 8 мы выбрали.
Значит, осталось выбрать еще 5-2 = 3 цифры из имеющихся: 1, 2, 3, 4, 5, 6, 9, 10.

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 26 окт. 2009 19:10 | IP
Slanderous


Новичок

RKI если возможно ответьте на вопрос - от куда в самом начале (где х>0) взялась такая вещь "(k^3)\2"

Всего сообщений: 9 | Присоединился: октябрь 2009 | Отправлено: 26 окт. 2009 19:44 | IP

Эта тема закрыта, новые ответы не принимаются

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 ]

Форум работает на скрипте © Ikonboard.com