RKI
Долгожитель
|
Цитата: Viktor Lag написал 18 мая 2009 15:04 Здравствуйте. Помогите пожалуйста решить простенькую задачу: на фондовом рынке были куплены акции. Они будут проданы при повышении цены на Х пунктов или при понижении цены на У пунктов. Движение цены равновероятно. Какова вероятность наступления каждого события?
Мне непонятна суть задачи
|
Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 18 мая 2009 17:10 | IP
|
|
B NORME
Новичок
|
ОЙ, ради бога извените пожалста. Я не точно написала задачу: для первого завода - 5% - 3-го класса недописала. Посмотрите еще раз плиз!!! 1) Два завода изготавляют одинаковые детали, первый завод производит 55% деталей 1-го класса точности, 40% - 2-го класса точности, 5% - 3-го класса точности. Второй завод производит соответственно: 28% деталей 1го класса точности, 25% - 2го класса точности и 47% - 3-го класса точности. Вероятность того, что взятая наугад деталь окажется 2-го класса точности равна 0,31. Найти вероятность того, что взятая наугад деталь окажется 1го класса точности.
|
Всего сообщений: 5 | Присоединился: май 2009 | Отправлено: 18 мая 2009 17:22 | IP
|
|
RKI
Долгожитель
|
Цитата: B NORME написал 18 мая 2009 17:22 ОЙ, ради бога извените пожалста. Я не точно написала задачу: для первого завода - 5% - 3-го класса недописала. Посмотрите еще раз плиз!!!
Если бы что-то в решении задачи зависело от этой цифры, я бы Вас спросила её. Решение остается прежним
|
Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 18 мая 2009 17:25 | IP
|
|
B NORME
Новичок
|
RKI! Вы наша спасительница!!! Огромное человеческое спасибо!!!!
|
Всего сообщений: 5 | Присоединился: май 2009 | Отправлено: 18 мая 2009 17:30 | IP
|
|
RKI
Долгожитель
|
Цитата: Alla 34 написал 17 мая 2009 23:40 Задача: У мальчика в кармане 2 10-копеечные монеты, 3 монеты 5-копеечные, и 5 монет 1-копеечные. Мальчик на удачу из кармана выбрал 6 монет. Определить вероятность случая (А), как из выбранных монет хватит заплатить за покупку 16 копеек.
A = {монет хватит, чтобы заплатить за покупку в 16 копеек} не A = {монет не хватит, чтобы заплатить за покупку} не A = A1 + A2 + A3 A1 = {пять монет по 1 копейке и одна монета в 5 копеек} P(A1) = C(5;5)*C(1;3)/C(6;10) = 3/210 A2 = {пять монет по 1 копейке и одна монета в 10 копеек} P(A2) = C(5;5)*C(1;2)/C(6;10) = 2/210 A3 = {четыре монеты по 1 копейке и две монеты по 5 копеек} P(A3) = C(4;5)*C(2;3)/C(6;10) = 15/210 P(не A) = P(A1 + A2 + A3) = P(A1) + P(A2) + P(A3) = = 3/210 + 2/210 + 15/210 = 20/210 = 2/21 P(A) = 1 - P(не A) = 1 - 2/21 = 19/21 (Сообщение отредактировал RKI 18 мая 2009 18:28)
|
Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 18 мая 2009 18:27 | IP
|
|
DoDiDoDo
Новичок
|
RKI премного благодарен вам за помощь.
|
Всего сообщений: 2 | Присоединился: май 2009 | Отправлено: 19 мая 2009 4:51 | IP
|
|
Viktor Lag
Новичок
|
Цитата: RKI написал 18 мая 2009 17:10
Цитата: Viktor Lag написал 18 мая 2009 15:04 Здравствуйте. Помогите пожалуйста решить простенькую задачу: на фондовом рынке были куплены акции. Они будут проданы при повышении цены на Х пунктов или при понижении цены на У пунктов. Движение цены равновероятно. Какова вероятность наступления каждого события?
Мне непонятна суть задачи
Цена изменяется по пунктам, т.е. купили за 100 у.е. после этого она может меняться только на 1 у.е. (на 0,5 не может). Изменение цены в обоих направлениях равновероятно (я это понимаю так, что вероятность повышения цены на 1 у.е. и понижение цены на 1 у.е. равны). При достижении уровня цены в 100 у.е.+Х или 100 у.е.-У акция будет продана. Считаю, что других событий произойти не может (на самом деле она может колебаться в диапазоне от 100 у.е.-У до 100 у.е.+Х, но этот вариант можно не рассматривать, т.к. диапазон будет узкий, хотя...) Предполагаю, что при Х=У вероятность наступления каждого события равна 0,5 Надо найти зависимость вероятности наступления событий от величин Х и У. Спасибо.
|
Всего сообщений: 5 | Присоединился: май 2009 | Отправлено: 19 мая 2009 8:36 | IP
|
|
Vavaka
Новичок
|
Ребят помогите пожалуйста с решением задач: 1) Вероятность попадания в мишень при одном выстреле 0,6. Производится два выстрела. Пусть случайная величина - число попаданий.Написать ряд распределения, построить функцию распределения, вычислить математическое ожидание и дисперсию. 2) Плотность вероятности случайной величины f(x)=0, x не принадлежит (0,2), f(x)=ax, x принадлежит(0,2). Определить параметр а, найти функцию распределения, вычислить математическое ожидание и дисперсию. Буду оочень благодарен))))!!!
|
Всего сообщений: 8 | Присоединился: апрель 2009 | Отправлено: 19 мая 2009 19:55 | IP
|
|
progr
Новичок
|
Здравствуйте. Есть такая задача: С.В. Х нормально распределена. Мх=0, Dx=9. Нужно записать плотность распределения. (С.В. Х нормально распределена - вот эта запись вообще мне непонятна). Заранее спасибо Всем за помощь.
|
Всего сообщений: 12 | Присоединился: ноябрь 2008 | Отправлено: 19 мая 2009 20:23 | IP
|
|
RKI
Долгожитель
|
Цитата: Vavaka написал 19 мая 2009 19:55 1) Вероятность попадания в мишень при одном выстреле 0,6. Производится два выстрела. Пусть случайная величина - число попаданий.Написать ряд распределения, построить функцию распределения, вычислить математическое ожидание и дисперсию.
Случайная величина X - число попаданий в мишень. Данная случайная величина принимает следующие значения: {X=0} - два промаха {X=1} - одно попадание и один промах {X=2} - два попадания P(X=0) = (0.4)*(0.4) = 0.16 P(X=1) = (0.4)*(0.6) + (0.6)*(0.4) = 0.48 P(X=2) = (0.6)*(0.6) = 0.36 Ряд распределения случайной величины X имеет вид: X 0 1 2 P 0.16 0.48 0.36 Функция распределения случайной величины X имеет вид: F(x) = {0, x < 0 {0.16, 0 <= x < 1 {0.64, 1 <= x < 2 {1, x >= 2 M(X) = 0*(0.16) + 1*(0.48) + 2*(0.36) = 1.2 M(X^2) = 0*(0.16) + 1*(0.48) + 4*(0.36) = 1.92 D(X) = M(X^2) - (M(X))^2 = 1.92 - 1.44 = 0.48
|
Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 19 мая 2009 20:39 | IP
|
|
|