Форум
» Назад на решение задач по физике и термеху
Регистрация | Профиль | Войти | Забытый пароль | Присутствующие | Справка | Поиск

» Добро пожаловать, Гость: Войти | Регистрация
    Форум
    Математика
        Интегрирование
Отметить все сообщения как прочитанные   [ Помощь ]
» Добро пожаловать на форум "Математика" «

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 ]
Модераторы: Roman Osipov, RKI, attention, paradise
  

MEHT



Долгожитель


Цитата: Guest написал 26 мая 2007 13:15
"Найти центр масс сектора круга радиусом R с центральным углом равным 2альфа" - как решить?

Поверхностная плотность масс задана хоть?

-----
В математике нет символов для неясных мыслей. (Анри Пуанкаре)

Всего сообщений: 1548 | Присоединился: июнь 2005 | Отправлено: 26 мая 2007 16:15 | IP
Guest



Новичок

Цитата:
    --------------------------------------------------------------------------------
    Цитата: Guest написал 26 мая 2007 13:15
    "Найти центр масс сектора круга радиусом R с центральным
      углом равным 2альфа" - как решить?

     -------------------------------------------------------------------------------

     Поверхностная плотность масс задана хоть?

НЕТ!вот всё что дано и усё =((( R да 2альфа =(

Всего сообщений: Нет | Присоединился: Never | Отправлено: 27 мая 2007 10:58 | IP
sistema nipel


Новичок

люди,помогите...
(х^2 - х + 1) dх / (х^4 + 2х^2 - 3)

Всего сообщений: 2 | Присоединился: май 2007 | Отправлено: 27 мая 2007 11:30 | IP
sistema nipel


Новичок

и вот это ур-ие(частное решение):
у" + 6у` + 9у =   10e^-3х
удовлетворяющие начальному условию
у(0) = 3 ; у`(0) = 2.


(Сообщение отредактировал sistema nipel 27 мая 2007 13:29)

Всего сообщений: 2 | Присоединился: май 2007 | Отправлено: 27 мая 2007 13:28 | IP
zion



Новичок

Попрошу помочь для нахождения определенного интеграла с пределами от 0 до пи/2 lncosxdx. Если не ошибаюсь, интеграл -несобственный т.к. при х=пи/2 подынтегральная функция не существует. Сложность есть в нахождении первообразной

(Сообщение отредактировал zion 27 мая 2007 18:14)

Всего сообщений: 2 | Присоединился: май 2007 | Отправлено: 27 мая 2007 17:59 | IP
Guest



Новичок

помогите решить приложения...
1.необходимо найти длину петли 9ay^2=x*(x-3a)^2
2.Объем тела при вращении фигуры вокруг оси абсцисс, ограниченной линиями x=(c^2/a)*((cos^3)t), y=(c^2/b)*((sin^3)t).

Всего сообщений: Нет | Присоединился: Never | Отправлено: 27 мая 2007 19:03 | IP
Guest



Новичок

Помогите пожалуйста вычислить след интеграл
dx/sin2x

Всего сообщений: Нет | Присоединился: Never | Отправлено: 29 мая 2007 23:29 | IP
alex142



Полноправный участник

&#8747;dx/sin2x = 2ln&#9474;tgx/4&#9474;+c
получается из интеграла &#8747;dx/sinx

Всего сообщений: 158 | Присоединился: май 2007 | Отправлено: 30 мая 2007 13:10 | IP
alex142



Полноправный участник

вот так нет знаков!! значит так! инт(x/sin2x)= 2 ln(tgx/4) + c скобки это модуль! получается интеграл из табличного инт(dx/sinx).

Всего сообщений: 158 | Присоединился: май 2007 | Отправлено: 30 мая 2007 13:12 | IP
korolevaMargo


Новичок


Цитата: sistema nipel написал 27 мая 2007 13:28

у" + 6у` + 9у =   10e^-3х удовлетворяющие начальному условию у(0) = 3 ; у`(0) = 2.



1. из характеристического уравнения k^2+6k+9=0 находим k1=-3 и  k2=-3, значит  y1=e^-3x и y2=xe^-3x
2. из системы (C1)'*y1+(C2)'*y2=0
                      (C1)'*(y1)'+(C2)'*(y2)'=10e^-3x
находим (C1)'=-10х и (C2)'=10
3. тогда C1=-5x^2+C3, a C2=10x+C4
4. т.о. y= (-5x^2+C3)*e^-3x+(10x+C4)*xe^-3x
5. исходя из начальных условий, С3 и С4 равны нулю. Значит y=5*(x^2)*(e^-3x)


(Сообщение отредактировал korolevaMargo 30 мая 2007 22:59)


(Сообщение отредактировал korolevaMargo 30 мая 2007 23:01)

Всего сообщений: 3 | Присоединился: май 2007 | Отправлено: 30 мая 2007 22:59 | IP

Эта тема закрыта, новые ответы не принимаются

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 ]

Форум работает на скрипте © Ikonboard.com