Форум
» Назад на решение задач по физике и термеху
Регистрация | Профиль | Войти | Забытый пароль | Присутствующие | Справка | Поиск

» Добро пожаловать, Гость: Войти | Регистрация
    Форум
    Математика
        2.3.1 Обыкновенные дифференциальные уравнения (ОДУ)
Отметить все сообщения как прочитанные   [ Помощь ]
» Добро пожаловать на форум "Математика" «

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 ]
Модераторы: Roman Osipov, RKI, attention, paradise
  

attention



Долгожитель


Цитата: inl написал 17 дек. 2009 21:28
помогите решить вот такой дифур:
y'+(2/x)*y=3*(x^2)*(y^(4/3))
заранее спасибо




-----
Математический форум MathHelpPlanet.com

Всего сообщений: 994 | Присоединился: апрель 2006 | Отправлено: 18 дек. 2009 3:55 | IP
PoopsiK



Новичок


Цитата: attention написал 18 дек. 2009 2:06

Цитата: PoopsiK написал 17 дек. 2009 21:49
ПОЖАЛУЙСТА ПРОШУ ВАС ОЧЕНЬ ПОМОГИТЕ ЕЩЕ РЕШИТЬ((((ЗАРАНЕЕ БЛАГОДАРНА ВАМ!!

1. 2*x^2*y'-4*x*y-y^2=0

2.y'-y/(x+2)=x^2+2x,  y(-1)=3/2

3. y"+y'-6y=e^(2x)*(20x+11)

4. y"-4y'+4y=e^(2x)*sin6x

пожалуйста очень надо((((


1)



2)



3)



4)



Надеюсь, это поможет.




Спасиб Тебе большое)))))))))очень помогло...зачет))))только во втором примере она не поняла по какому принципу решалось))))))ну это не важно....СПАСИБО!"!!!!!!

Всего сообщений: 9 | Присоединился: декабрь 2009 | Отправлено: 18 дек. 2009 19:33 | IP
Q2



Новичок

Помогите, пожалуйста!
Найти общее решение дифф. уравнения второго порядка. Выделить из общего решения частное, удовлетворяющее начальным условиям

Всего сообщений: 10 | Присоединился: декабрь 2009 | Отправлено: 18 дек. 2009 19:46 | IP
Taniana


Новичок

Здравствуйте!!!  очень прошу, помогите решить, я в этом деле ноль    ( 1+e^x)ydy - e^y dx = 0

Всего сообщений: 1 | Присоединился: декабрь 2009 | Отправлено: 20 дек. 2009 15:23 | IP
Vitto


Новичок

Найти общее решение:
а) y'=(y-1)*(корень кубический(y))

б) y'=корень кубический (-y/x)

Заранее спасибо!

(Сообщение отредактировал Vitto 24 дек. 2009 15:17)


(Сообщение отредактировал Vitto 24 дек. 2009 15:18)

Всего сообщений: 7 | Присоединился: декабрь 2009 | Отправлено: 24 дек. 2009 15:17 | IP
knijaday


Новичок

здравствуйте, помогите пожалуйста с этим уравнением


Всего сообщений: 3 | Присоединился: декабрь 2009 | Отправлено: 25 дек. 2009 0:10 | IP
Dmytrij


Новичок

помогите пожалуйста решить уравнение бернули:
y' + y((x+1/2)/x^2+x+1) = (1-x^2)y^2/(x^2+x+1)^3/2

Всего сообщений: 2 | Присоединился: декабрь 2009 | Отправлено: 26 дек. 2009 0:18 | IP
D14



Новичок

Помогите решить, пожалуйста!
"Найти общее решение дифференциального ур-ия 1го порядка с разделяющимися переменными"


Всего сообщений: 2 | Присоединился: декабрь 2009 | Отправлено: 26 дек. 2009 15:15 | IP
Alleks



Новичок

Друзья помогите решить такой диффур : y' +2xy= e^-x^2*sin(x) Заранее благодарен

Всего сообщений: 23 | Присоединился: март 2009 | Отправлено: 26 дек. 2009 18:47 | IP
Alleks



Новичок

Хочу добавить условия: Yo=1, Xo=0

Всего сообщений: 23 | Присоединился: март 2009 | Отправлено: 26 дек. 2009 19:05 | IP

Эта тема закрыта, новые ответы не принимаются

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 ]

Форум работает на скрипте © Ikonboard.com