serejka93
Новичок
|
помогите пожалуйста 1. Количество воды необходимого предприятию - случайная величина. Мат.ожидание 125 м^3, оценить вероятность того, что расход воды: 1) не превысит 500 м^3; 2) будет меньше 300 м^3 2. Вероятность опоздания пассажира на поезд равна 0,007. Оценить вероятность того, что из 20000 пассажиров будет от 100 до 180 (включительно) опоздавших. 3.
|
Всего сообщений: 2 | Присоединился: ноябрь 2011 | Отправлено: 9 дек. 2011 23:17 | IP
|
|
RAMON
Новичок
|
имеется 10 ящиков однородных деталей. вероятность того ,что в одном взятом наугад ящике детали окажутся стандартными равна 0.9. найти вероятность того что хотябы в одном ящике все детали будут стандартными
|
Всего сообщений: 1 | Присоединился: декабрь 2011 | Отправлено: 10 дек. 2011 14:04 | IP
|
|
Valov
Новичок
|
Ребята помогите пожалуйста решить задачку . Имеется 8 корзин , в каждой по белому и черному шару. Какова вероятность вытащить все восемь шаров одного цвета? Заранее благодарен.
|
Всего сообщений: 2 | Присоединился: декабрь 2011 | Отправлено: 11 дек. 2011 16:37 | IP
|
|
Olia19
Новичок
|
помогите пожалуйста решить ! осталось два дня дан закон распределения дискретной случайной вылечены X. Найти её математическое ожидание, дисперсию и среднее квадратичное отклонение. xi -3 -2 0 1 pi 0,214 0,143 0,286 0,357 Найти математическое ожидание, дисперсию , среднее квадратичное отклонение с положительными числами в xi все понятно но как быть с отрицательными в ответе получается тоже минус но как я поняла так быть не должно
|
Всего сообщений: 3 | Присоединился: декабрь 2011 | Отправлено: 11 дек. 2011 18:48 | IP
|
|
alina777
Новичок
|
Вероятность попадания в цель при каждом выстреле из орудия равна 0,8. Сколько нужно произвести выстрелов, чтобы наивероятнейшее число попаданий было равно 20?
|
Всего сообщений: 11 | Присоединился: ноябрь 2011 | Отправлено: 11 дек. 2011 19:42 | IP
|
|
ustam
Долгожитель
|
Цитата: Olia19 написал 11 дек. 2011 18:48 дан закон распределения дискретной случайной вылечены X. Найти её математическое ожидание, дисперсию и среднее квадратичное отклонение. xi -3 -2 0 1 pi 0,214 0,143 0,286 0,357 Найти математическое ожидание, дисперсию , среднее квадратичное отклонение с положительными числами в xi все понятно но как быть с отрицательными в ответе получается тоже минус но как я поняла так быть не должно
Математическое ожидание М(Х) может быть и положительным, и отрицательным. Дисперсия и среднее квадратичное отклонение всегда положительны, и у вас они будет положительными
|
Всего сообщений: 420 | Присоединился: декабрь 2008 | Отправлено: 11 дек. 2011 23:00 | IP
|
|
Olia19
Новичок
|
Математическое ожидание М(Х) может быть и положительным, и отрицательным. Дисперсия и среднее квадратичное отклонение всегда положительны, и у вас они будет положительными
тогда я что то делаю не так наверное ... а) Мх=(-3*0,214)+(-2*0,143)+(0*0,268)+(1*0,357)=-0,571 б)Д(х)=М(х^2)-M^2(x) M(x^2)=(-3^2*0,214)+(-2^2*0,143)+(0^2*0,268)+(1^2*0,357)=-0,571 Д(х)=-2,141-(-0,571^2)=-1,815 δ(х)=V-1,815 ....под "V" я имею в виду корень Извините может написала полную глупость, но чего то я совсем запуталась. А тему на изучение дали как домашнее задание совсем без лекций
|
Всего сообщений: 3 | Присоединился: декабрь 2011 | Отправлено: 12 дек. 2011 18:12 | IP
|
|
ustam
Долгожитель
|
Цитата: Olia19 написал 12 дек. 2011 18:12 тогда я что то делаю не так наверное ... M(x^2)=(-3^2*0,214)+(-2^2*0,143)+(0^2*0,268)+(1^2*0,357)=-0,571
Написали ахинею!!! И положительное, и отрицательное число при возведении в квадрат дают ПОЛОЖИТЕЛЬНОЕ число!!!!! M(x^2)=(-3^2)*0,214+(-2^2)*0,143+(0^2)*0,268+(1^2)*0,357=2,855 Д(х)= 2,855 - (-0,571)^2 = 2,529
|
Всего сообщений: 420 | Присоединился: декабрь 2008 | Отправлено: 12 дек. 2011 22:11 | IP
|
|
Olia19
Новичок
|
спасибо большое !!! Я очень вам признательна !
|
Всего сообщений: 3 | Присоединился: декабрь 2011 | Отправлено: 13 дек. 2011 7:15 | IP
|
|
Mapkc
Новичок
|
1) В партии из 30 деталей - 4 дефектных. Определите вероятность того, что среди 5 выбранных деталей не меньше 2 окажутся дефектными. 2) Пусть A и B - некоторые события, связанные с одним опытом, причём P(A)=0,25 и P(B)=0,35. Предполагая, что A и B независимы, вычислите вероятность того, что: а) не произошло ни одного из событий А и В; б) произошло одно из событий А и В. 3) Вероятность выбора отличника на факультете равна 1/7. Из 28 студентов группы наудачу вызывают три студента. Определите вероятности всех возможных значений числа отличников, которые могут оказаться среди вызванных трёх студентов. Заранее ОГРОМНОЕ спасибо!
|
Всего сообщений: 1 | Присоединился: декабрь 2011 | Отправлено: 15 дек. 2011 17:00 | IP
|
|
|