Joker777
Новичок
|
Огромнейшее Вам спасибо! Если можно, то помогите так-же со второй функцией, это будет последняя) y(x)=(2+x^2)*e^-x^3 (e в степени -x в кубе)
|
Всего сообщений: 4 | Присоединился: декабрь 2008 | Отправлено: 28 дек. 2008 18:02 | IP
|
|
RKI
Долгожитель
|
То Joker777 Дальше застопорилась Получаются не хорошие производные Надо подумать
|
Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 28 дек. 2008 18:23 | IP
|
|
Joker777
Новичок
|
Ничего страшного, мне только через неделю сдавать)
|
Всего сообщений: 4 | Присоединился: декабрь 2008 | Отправлено: 28 дек. 2008 18:39 | IP
|
|
natafka
Новичок
|
Помогите,пожалуйста )))))) не могу решить эти вопросы функция вида у=х/х^2-4 1) точки разрыва функции 2)периодичность 3)изменение функции при х,стремящемся к концам интервалов облст определения(надо найти левосторонние и правосторонние пределы функции в предполагаемых толчках разрыва)Сделать окончательный вывод о характере разрыва 4)Составить уравнение касательной к графику в т.k=0
|
Всего сообщений: 49 | Присоединился: ноябрь 2008 | Отправлено: 30 дек. 2008 17:47 | IP
|
|
RKI
Долгожитель
|
1) x^2 - 4 = 0 x^2 = 4 x = -2; x = 2 - точки разрыва
|
Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 30 дек. 2008 19:44 | IP
|
|
RKI
Долгожитель
|
2) f(x+T) = f(x) (x+T)/((x+T)^2-4) = x/(x^2-4) (x+T)/(x^2+2Tx+T^2-4)-x/(x^2-4) = 0 (x+T)(x^2-4)-x(x^2+2Tx+T^2-4) = 0 x^3-4x+Tx^2-4T-x^3-2Tx^2-xT^2+4x = 0 -xT^2-4T = 0 T=0 f(x+T) = f(x) только, если T=0 Следовательно, функция не является периодической
|
Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 30 дек. 2008 19:49 | IP
|
|
ProstoVasya
Долгожитель
|
Если функция имела бы период, то точки x = -2; x = 2 - точки разрыва повторялись бы бесконечно.
|
Всего сообщений: 1268 | Присоединился: июнь 2008 | Отправлено: 30 дек. 2008 19:53 | IP
|
|
RKI
Долгожитель
|
3) y(x) = x/(x^2-4) = 1/2(x-2) + 1/2(x+2) lim{x->-2+0} y(x) = +бесконечность lim{x->-2-0} y(x) = -бесконечность x=-2 - точка разрыва второго рода lim{x->2+0} y(x) = +бесконечность lim{x->2-0} y(x) = -бесконечность x=2 - точка разрыва второго рода
|
Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 30 дек. 2008 19:55 | IP
|
|
RKI
Долгожитель
|
Спасибо ProstoVasya Я совсем забыла этот факт
|
Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 30 дек. 2008 19:56 | IP
|
|
RKI
Долгожитель
|
4) Уравнение касательной имеет вид y(x) = y(x0) + y'(x0)*(x-x0) y(0) = 0/(-4) = 0 y'(x) = (x^2-4-x*2x)/(x^2-4)^2 = (-x^2-4)/(x^2-4)^2 y'(0) = (-4)/16 = -1/4 y(x) = 0-1/4*(x-0) y(x) = -x/4
|
Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 30 дек. 2008 20:00 | IP
|
|