Форум
» Назад на решение задач по физике и термеху
Регистрация | Профиль | Войти | Забытый пароль | Присутствующие | Справка | Поиск

» Добро пожаловать, Гость: Войти | Регистрация
    Форум
    Математика
        2.1.10 Криволинейные интегралы
Отметить все сообщения как прочитанные   [ Помощь ]
» Добро пожаловать на форум "Математика" «

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 ]
Модераторы: Roman Osipov, RKI, attention, paradise
  

pooh


Новичок

спаасибо=)

Всего сообщений: 7 | Присоединился: ноябрь 2008 | Отправлено: 27 нояб. 2008 23:40 | IP
Mathon


Новичок

Добрый день!Никак не могу разобраться с 2мя задачами...Буду очень признателен,если вы поможете!

1) Найти объём по поверхностям : z=x^2+y^2 , y=x^2 , y=2, z=0 !
2)Вычислить интеграл от A до B : (dx+dy)/(x+y) при A(1/2;1/2) , B(a;b) на контуре (x+y) не равном 0...
Заранее спасибо,очень надеюсь на вашу помощь!

Всего сообщений: 6 | Присоединился: ноябрь 2008 | Отправлено: 29 нояб. 2008 15:31 | IP
Derk



Новичок

5) Криволинейный интеграл

5.1 Вычислить криволинейный интеграл первого рода. ( рис №1, рис №2 )


рис №1


рис №2


5.2 Вычислить криволинейный интеграл второго рода. ( рис №3, рис №4 )


рис №3


рис №4


(Сообщение отредактировал Derk 13 дек. 2008 2:18)

Всего сообщений: 9 | Присоединился: октябрь 2008 | Отправлено: 13 дек. 2008 1:56 | IP
Koryuu



Новичок

2-ю задачу я смог решить:
L = int sqrt [(x')^2 + (y')^2] dt
верхний предел b, нижний a
(x')^2 + (y')^2 = 3^2 * [(1 - cos(t))^2 + sin^2(t)] = 9 * 2 * (2 sin^2(t/2))
sqrt [(x')^2 + (y')^2] = sqrt [9 * 2 * (2 sin^2(t/2))] = 6 sin(t/2)
L = int 6 sin(t/2) dt =
верхний предел П, нижний 0
= 6 cos(t/2) = 6 (cos(П/2) - cos 0) = 6 (0 - 1) = -6

А вот с 1-й задачей пока не очень:
y1 = f1(x)
y2 = f2(x)
f1(x) >= f2(x)
a >= x <= b
S = int [f1(x) - f2(x)] dx = int f1(x)dx - int f2(x)dx
верхний предел b, нижний a
И в моём случае:
f1(x) = 3x^2 - 1
f2(x) = -3x + 5
Я не понимаю, откуда мне взять пределы?

Всего сообщений: 14 | Присоединился: декабрь 2008 | Отправлено: 14 дек. 2008 13:53 | IP
ProstoVasya


Долгожитель

Во второй задаче Вы ошиблись в конце (длинва положительна). Надо
= 6(-2) cos(t/2) =-12 (cos(П/2) - cos 0) = -12 (0 - 1) = 12
В первой задаче надо найти точки пересечения кривых, т.е решить систему
у= 3x^2 - 1
у= -3x + 5
Интегрировать по х в пределах, которые найдёте из системы.
Ответ: 9/2

Всего сообщений: 1268 | Присоединился: июнь 2008 | Отправлено: 14 дек. 2008 14:54 | IP
Avrora



Новичок

вычислить криволинейный интеграл |(y-4)dx+(2x-1)dy
                                                   L
где L есть дуга параболы y=x^2 - 2x - 3, заключенная между точками A(0;-3) и В(3;0).
Решала у меня получилось -6, но что-то я сомневаюсь. помогите кто-нибудь, пожалуйста.

Всего сообщений: 10 | Присоединился: декабрь 2008 | Отправлено: 16 дек. 2008 0:16 | IP
RKI



Долгожитель


Цитата: Avrora написал 16 дек. 2008 0:16
вычислить криволинейный интеграл |(y-4)dx+(2x-1)dy
                                                   L
где L есть дуга параболы y=x^2 - 2x - 3, заключенная между точками A(0;-3) и В(3;0).
Решала у меня получилось -6, но что-то я сомневаюсь. помогите кто-нибудь, пожалуйста.



Первый способ
x=t+1
y=t^2 - 4
-1 <= t <= 2

dx=dt
dy = 2tdt

|(y-4)dx+(2x-1)dy =
= int_{-1}^{2} (5t^2 + 2t - 8)dt =
= (5t^3/3 + t^2 - 8t)|_{-1}^{2} =
= (40/3 + 4 - 16) - (-5/3 +1 + 8) =
= -6

Второй способ
0 <= x <= 3
dy=(2x-2)dx

|(y-4)dx+(2x-1)dy =
= int_{0}^{3} (5x^2 - 8x - 5)dx =
= (5x^3/3 - 4x^2 - 5x)|_{0}^{3} =
= -6


(Сообщение отредактировал RKI 16 дек. 2008 13:24)

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 16 дек. 2008 13:12 | IP
Avrora



Новичок

RKI, спасибо тебе огромное. Рада, что хоть правильно решила задачу сама.

Всего сообщений: 10 | Присоединился: декабрь 2008 | Отправлено: 16 дек. 2008 13:51 | IP
Koryuu



Новичок

to ProstoVasya
Систему я решил:
x = 1
x = -2
А вот дальше не получается так, как у вас.
Возможно, я неправильно интегрирую? Пробовал по разному:

1) int (-3x + 5) dx = [(-3x + 5)^2] / [2 * (-3)] = 39/2
int (3x^2 - 1) dx = [(3x^2 - 1)^2] / [2 * 3] = -39/2
S = -39

2) Или надо интегрировать как сумму/разность? Т.е.:
int (3x^2 - 5) dx = int (3x^2) dx - int 1 dx = -3
int (-3x + 5) dx = int (-3x) dx + int 5 dx
А вот тут я застопорился. int 1 dx = x. А int 5 dx = ?

3) Или надо через замену?
t = 3x^2 - 1
dx = [t dt] / [6 *sqrt ((-1- t)/3)]
t = -3x + 5
dx = -dt/3

Каким способом мне решать?

Всего сообщений: 14 | Присоединился: декабрь 2008 | Отправлено: 16 дек. 2008 20:42 | IP
vaki boy



Новичок

Помогите пожалуйста!Вооще не понимаю как в этом примере проставить пределы интегрирования:
Найти объем тела,ограниченного поверхностью: (z^2+x^2+y^2)^4=x^7, (x>=0)
Использовать сферические координаты.
Заранее спасибо за помощь)


(Сообщение отредактировал vaki boy 16 дек. 2008 21:58)

Всего сообщений: 11 | Присоединился: март 2008 | Отправлено: 16 дек. 2008 21:58 | IP

Отправка ответа:
Имя пользователя   Вы зарегистрировались?
Пароль   Забыли пароль?
Сообщение

Использование HTML запрещено

Использование IkonCode разрешено

Смайлики разрешены

Опции отправки

Добавить подпись?
Получать ответы по e-mail?
Разрешить смайлики в этом сообщении?
Просмотреть сообщение перед отправкой? Да   Нет
 

Переход к теме
<< Назад Вперед >>
Несколько страниц [ 1 2 3 4 5 6 7 8 9 10 ]

Форум работает на скрипте © Ikonboard.com