solveig
            		 
            		
  
                     Новичок
        		 | 
        		
            		               
    			     
            		
           			Да..в принципе можно было и самой догадаться). Дальше нужно дифференцировать методом Эйлера. остался еще один вопрос.. С уравнением второго порядка не знаю, как это сделать.
				 | 
			 
			
				
					 
                    Всего сообщений: 8 | Присоединился: декабрь 2008 | Отправлено: 9 дек. 2008 18:34 | IP
    		     | 
              
			 
			 | 
		
    
    
    
		
			
			
			
        		
            		
            		RKI  
            		
 
  
            		
  
                     Долгожитель
        		 | 
        		
            		               
    			     
            		
           			что значит дифференцировать методом Эйлера?  может быть решать методом Эйлера?
				 | 
			 
			
				
					 
                    Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 9 дек. 2008 18:36 | IP
    		     | 
              
			 
			 | 
		
    
    
    
		
			
			
			
        		
            		
            		solveig
            		 
            		
  
                     Новичок
        		 | 
        		
            		               
    			     
            		
           			Пардон, интегрировать данным методом.  Но, думаю, решать тоже имеет смысл)  если быть точнее модифицированным методом эйлера.      (Сообщение отредактировал solveig 9 дек. 2008 19:17)
				 | 
			 
			
				
					 
                    Всего сообщений: 8 | Присоединился: декабрь 2008 | Отправлено: 9 дек. 2008 19:10 | IP
    		     | 
              
			 
			 | 
		
    
    
    
		
			
			
			
        		
            		
            		solveig
            		 
            		
  
                     Новичок
        		 | 
        		
            		               
    			     
            		
           			В общем, если не трудно, было бы здорово, если бы Вы рассказали, как это сделать.
				 | 
			 
			
				
					 
                    Всего сообщений: 8 | Присоединился: декабрь 2008 | Отправлено: 9 дек. 2008 20:39 | IP
    		     | 
              
			 
			 | 
		
    
    
    
		
			
			
			
        		
            		
            		Roman Osipov  
            		
 
  
            		
  
                     Долгожитель
        		 | 
        		
            		                   
    			     
            		
           			Алгоритм этого численно метода решения ОДУ первого порядка приведен, например, здесь:  внешняя ссылка удалена 
				 | 
			 
			
				
					 
                    Всего сообщений: 2356 | Присоединился: май 2007 | Отправлено: 9 дек. 2008 20:41 | IP
    		     | 
              
			 
			 | 
		
    
    
    
		
			
			
			
        		
            		
            		solveig
            		 
            		
  
                     Новичок
        		 | 
        		
            		               
    			     
            		
           			этот алгоритм я знаю.. но как быть с данным уравнением? тут же есть вторая производная.      (Сообщение отредактировал solveig 9 дек. 2008 20:46)
				 | 
			 
			
				
					 
                    Всего сообщений: 8 | Присоединился: декабрь 2008 | Отправлено: 9 дек. 2008 20:46 | IP
    		     | 
              
			 
			 | 
		
    
    
    
		
			
			
			
        		
            		
            		Roman Osipov  
            		
 
  
            		
  
                     Долгожитель
        		 | 
        		
            		                   
    			     
            		
           			Сведите к системе 2-х ОДУ 1-го порядка, стандартная процедура.
				 | 
			 
			
				
					 
                    Всего сообщений: 2356 | Присоединился: май 2007 | Отправлено: 9 дек. 2008 20:52 | IP
    		     | 
              
			 
			 | 
		
    
    
    
		
			
			
			
        		
            		
            		Roman Osipov  
            		
 
  
            		
  
                     Долгожитель
        		 | 
        		
            		                   
    			     
            		
           			Реализация метода трапеций в Mathcad (метод Симпсона реализуется с отличием в соотв. формуле): 
    
				 | 
			 
			
				
					 
                    Всего сообщений: 2356 | Присоединился: май 2007 | Отправлено: 16 дек. 2008 11:00 | IP
    		     | 
              
			 
			 | 
		
    
    
    
		
			
			
			
        		
            		
            		dmr
            		
 
  
            		
  
                     Новичок
        		 | 
        		
            		               
    			     
            		
           			Ктонибудь может подсказать как это сделать в MathCAD :     Проверка качества генератора псевдослучайных чисел. Применение критерия хи-квадрат. runif(1000,0,1)
				 | 
			 
			
				
					 
                    Всего сообщений: 3 | Присоединился: декабрь 2008 | Отправлено: 18 дек. 2008 14:56 | IP
    		     | 
              
			 
			 | 
		
    
    
    
		
			
			
			
        		
            		
            		dmr
            		
 
  
            		
  
                     Новичок
        		 | 
        		
            		               
    			     
            		
           			Так всё сложно, что никто не знает? (
				 | 
			 
			
				
					 
                    Всего сообщений: 3 | Присоединился: декабрь 2008 | Отправлено: 21 дек. 2008 16:55 | IP
    		     | 
              
			 
			 |