Physmath
Новичок
|
Задача: Точку P = (1,2,3) отразили симметрично плоскости xy, затем её образ Q повернули на 180 градусов вокруг оси x, полученную точку R параллельным переносом на 5 единиц в положительном направлении оси y перенесли в точку S. Какие координаты имеет точка S? Помогите разобраться, ничего не могу понять: решил – получились координаты (-1, 3, -3), но в ответе (1,3,3). Почему? Что я не так сделал?
|
Всего сообщений: 12 | Присоединился: ноябрь 2008 | Отправлено: 29 нояб. 2008 14:16 | IP
|
|
Roman Osipov
Долгожитель
|
Исходная точка (1,2,3). 1. отображение относительно оси Oxy записывается так (a,b,c)-->(a,b,-c), поэтому образом точки (1,2,3) при таком отображении будет точка (1,2,-3). 2. Поворот на 180deg в положительном направлении относительно оси Ox (см. преобразование поворота декартовой системы координат, в интернете) переведет точку (1,2,-3) в точку (1,-2,3). 3. перенос точки на 5 единиц в положительном направлении оси y можно записать так (a,b,c)--->(a,b+5,c), поэтому образом точки (1,-2,3) при этом отображении будет точка (1,3,3). Итак, эта суперпозиция преобразований переводит точку (1,2,3) в точку (1,3,3).
|
Всего сообщений: 2356 | Присоединился: май 2007 | Отправлено: 29 нояб. 2008 14:23 | IP
|
|
KSS
Новичок
|
Помогите решить задачку по геометрии за 10 класс: Точка М принадлежит медиане AD трекугольника ABC. Можно ли провести через точку М прямую, которая не пересекает сторон данного треугольника?
|
Всего сообщений: 2 | Присоединился: ноябрь 2008 | Отправлено: 29 нояб. 2008 20:37 | IP
|
|
KSS
Новичок
|
Пожалуйста обратите внимание на мое задание. Срочно нужно!
|
Всего сообщений: 2 | Присоединился: ноябрь 2008 | Отправлено: 29 нояб. 2008 20:58 | IP
|
|
Roman Osipov
Долгожитель
|
Нет
|
Всего сообщений: 2356 | Присоединился: май 2007 | Отправлено: 29 нояб. 2008 21:03 | IP
|
|
Physmath
Новичок
|
Roman Osipov, спасибо, разобрался!
|
Всего сообщений: 12 | Присоединился: ноябрь 2008 | Отправлено: 30 нояб. 2008 10:41 | IP
|
|
hak 0502
Новичок
|
Помогите решить: 1. Написать уравнение квадрата, который описанный вокруг эллипса (x^2)/9 + (y^2)/3 = 1 2. Написать уравнение круглого цилиндра с оссю x/7 = y/0 = (z-1)/2, если он проходит через точку (1,2,3). Спасибо вам большое! При возможности, ответы высылайте на e-mail: haker0502@rambler.ru
|
Всего сообщений: 12 | Присоединился: ноябрь 2008 | Отправлено: 30 нояб. 2008 16:50 | IP
|
|
hak 0502
Новичок
|
Помогите решить: 1. Написать уравнение квадрата, который описанный вокруг эллипса (x^2)/9 + (y^2)/3 = 1 2. Написать уравнение круглого цилиндра с оссю x/7 = y/0 = (z-1)/2, если он проходит через точку (1,2,3). Спасибо вам большое! При возможности, ответы высылайте на e-mail: haker0502@rambler.ru
|
Всего сообщений: 12 | Присоединился: ноябрь 2008 | Отправлено: 30 нояб. 2008 16:52 | IP
|
|
ProstoVasya
Долгожитель
|
1) Предлагаю квадрат, уравнение которого имеет вид |x| + |y| = p > 0. Для нахождения параметра "р" потребуем чтобы система уравнений (x^2)/9 + (y^2)/3 = 1 x + y = p имела одно решение в первом квадранте (точка касания). Подставим "у" из второго уравнения в первое, получим квадратное уравнение для "х". Чтобы было единственное решение, надо чтобы дискриминант этого уравнения равнялся 0, т.е. р = 2sqrt(3) 2) Возьмем любую точку пространства Р(x,y,z) и найдём её расстояние d до оси, направляющий вектор которой равен a={7,0,2}. Для этого возьмём точку А(0,0,1), лежащую на оси и вычислим площадь S параллелограмма натянутого на векторы АР и а с помощью векторного произведения S= | AP*a|, здесь * - знак векторного произведения. Получим S = = sqrt(53 y^2 + (2x - 7z + 7)^2). Искомое расстояние d равно высоте параллелограмма. Поэтому d = S/|a|, |a|=sqrt(53). По этой формуле можно найти расстояние от точки (1,2,3) до оси, которое равно sqrt(356/53). Уравнение цилиндра имеет вид d^2 = 356/53, или 53 y^2 + (2x - 7z + 7)^2 = 356 Возможно можно упростить, если надо.
|
Всего сообщений: 1268 | Присоединился: июнь 2008 | Отправлено: 30 нояб. 2008 21:37 | IP
|
|
alex777
Новичок
|
Биссектриса делит треугольник на два равнобедренных треугольника. Найдите углы исходного треугольника кто нить помогите плиз
|
Всего сообщений: 1 | Присоединился: декабрь 2008 | Отправлено: 1 дек. 2008 13:09 | IP
|
|
|