Radix
Удален
|
Вообщем наш лектор дал нам(то есть 4 группам) заочный утр олимпиады по высшей математике. Но весь прикол в том, что если не сдашь её, больше чем 3е не получишь. Все таки не очень хочется иметьодну 3 среди всех 5 и лишиться степендии. Поэтому прошу пожалуйста помогите, если кто может. 1. Дана система [MATH]\{{x[sup]2[/sup]+y[sup]2+z[/sup]2=10y \\ x+2y+2z-19=0}[/MATH] Найти центр и радиус окружности. Не уверен, но помоему тут должна быть сфера. Или может быть и окружность? Если сфера, то моё предполагаемое решение такое: -домножаем второе уравнение на 2 -переносим -19 вправо -добавляем слева и справа 14 -в первом уравнении переносим 10у влево -складываем уравнения и получаем (x+1)[sup]2[/sup]+(y-3)[sup]2[/sup]+(z+2)[sup]2[/sup]. Отсюда, центр (-1, 3, -2), радиус 2\sqrt{13}. Поправте, если что то не так. 2. Вычислить определитель |1+a[sub]1[/sub] 1 1 1| | 1 1+a[sub]2[/sub] 1 1 1| | 1 1 1+a[/sub]3[sub] 1| | 1 1 1 1+a[sub]n[/sub]| Пробовал привести к верхней 3уголной матрице, но результатов от этого 0. 3. Чему равен ранг матрицы при разных значениях \lambda 3 1 1 4 \lambda 4 10 1 1 7 17 3 2 2 4 3 Ранг матрицы мы не изучали, пытался разобраться сам по википедии, но до кончца не понял. 4. Доказать, что (e[sup]ax[/sup]cos bx )[sup](n)[/sup]=r[sup]n[/sup]e[sup]ax[/sup] cos(bx+n\alpha), где r=\sqrt{a[sup]2[/sup]+b[sup]2[/sup]}, tg \alpha =b/a 5. Вывести формулу для второй производной функции, обратной к данной у=f(x) Мои мысли: зная то, что g[sup]l[/sup](y)=1/f[sup]l[/sup](x) (g(y) обратная) и то, что 2 производная - производная от первой производной, логично для предыдущего выражения использовать формулу производной частного. Тогда получим -f[sup]ll[/sup]/(f[sup]l[/sup])[sup]2[/sup]. Только вот, что делать дальше?
|