Форум
» Назад на решение задач по физике и термеху
Регистрация | Профиль | Войти | Забытый пароль | Присутствующие | Справка | Поиск

» Добро пожаловать, Гость: Войти | Регистрация
    Форум
    Физика
        Маятники
Отметить все сообщения как прочитанные   [ Помощь ]
» Добро пожаловать на форум "Физика" «

Переход к теме
<< Назад Вперед >>
Одна страница
Модераторы: duplex, Roman Osipov, gvk
  

yura koshlich


Удален

У меня есть несколько вопросов по мат-м и физ-м маятникам:
1) Почему только при отклонении мат. маятника на малый угол будут совершаться гармонические колебания.
2) Как найти (построить) зависимость между периодом и углом отклонения физ. и мат. маятников. Какой из периодов (физ. или мат. маятника) будет больше при отклонении на равный угол.

Всего сообщений: N/A | Присоединился: N/A | Отправлено: 27 нояб. 2005 16:40 | IP
Phil


Удален

Ответ на первый вопрос.

Потому что только при малых углах, решая эту задачу, можно получить однородное диф. уравнение второго порядка, которое и описывает гармонические колебания.

Ответ на второй вопрос.

Берешь любой учебник по физике для ВУЗов, например, Сивухин 1-ый том или Савельев 1-ый том, и смотришь.

Всего сообщений: N/A | Присоединился: N/A | Отправлено: 28 нояб. 2005 10:20 | IP
latgal


Удален

потому как физический маятник-этонапржине,аматематичесий н а веревке и формулы разные

Всего сообщений: N/A | Присоединился: N/A | Отправлено: 3 дек. 2005 1:03 | IP
Ren


Долгожитель

1. Колебания могут совершаться в любой системе, имеющий минимум потенциальной энергии в какой то точке (положение равновесия). В приближении, например в одномерном случае любой вид функции приближаем параболой, и получаем гармонические колебания!

Всего сообщений: 284 | Присоединился: октябрь 2005 | Отправлено: 3 дек. 2005 21:46 | IP
Guest



Новичок

Ребята, чи не вже в Сивухине пишут (находят, вычисляют, считают, аппроксимируют) зависимость периода от угла? По-моему это курс теор. механики, дорогие. И матфизики со знанием гипергеом. функции. Если делать все по-строгому, а не тяп-ляп.

LynxGAV

Всего сообщений: Нет | Присоединился: Never | Отправлено: 5 дек. 2005 2:38 | IP
gvk


Модератор

Гармонические колебания - это когда колебания описываются простейшим волновым уравнением (Гельмгольца).
Название это связано с некой мистикой, которую обнаружили математики и физики в 19 веке. Один из самых больших результатов того времени- это обнаружение гармонических функций, т.е. функций которые можно дифференцировать в комплексном анализе. Эти функции удовлетворяют частному случаю двумерного волнового уравнения - уравнению Лапласа. Тогда решили, что реальные явления природы всегда описываются непрерывными и дифференцируемыми функциями. В этом и проявляется какая-то тайная гармония природы.  
Однако периодические решения возможны и для многих других уравнений. Короче, чтобы по-настоящему изучить гармонию природы, нужно изучать физику параллельно с матфизикой (УрЧП, ОДУ), комплексным анализом и многими др. математ. дисциплинами. Ну это уже для истинных любителей математики и физики!
 


(Сообщение отредактировал gvk 6 дек. 2005 3:52)

Всего сообщений: 830 | Присоединился: октябрь 2003 | Отправлено: 5 дек. 2005 18:49 | IP
Guest



Новичок

to gvk

Это всё верно, но ведь в том и фишка, что если посчитать, оставляя лишь члены второго порядка (т.е. для малых углов (гармонические колебания)), то угловой зависимости в периоде не будет. В последующем приближении будет уравнение, при решении которого не обойтись без знания эллиптических интегралов и имеем налицо зависимость по углу.
Если это дают на первом курсе - это идиотизм. Либо же есть какое-то простое решение. (Я такого не вижу.)

to koshlich

Вы - редиска, сами знаете почему.


LynxGAV

Всего сообщений: Нет | Присоединился: Never | Отправлено: 5 дек. 2005 22:48 | IP
latgal


Удален

T=2п  корень кв(l/g)
E=mgh
h=l-lcosa
Попробуй так

Всего сообщений: N/A | Присоединился: N/A | Отправлено: 11 дек. 2005 10:25 | IP

Отправка ответа:
Имя пользователя   Вы зарегистрировались?
Пароль   Забыли пароль?
Сообщение

Использование HTML запрещено

Использование IkonCode разрешено

Смайлики разрешены

Опции отправки

Добавить подпись?
Получать ответы по e-mail?
Разрешить смайлики в этом сообщении?
Просмотреть сообщение перед отправкой? Да   Нет
 

Переход к теме
<< Назад Вперед >>
Одна страница

Форум работает на скрипте © Ikonboard.com