Форум
» Назад на решение задач по физике и термеху
Регистрация | Профиль | Войти | Забытый пароль | Присутствующие | Справка | Поиск

» Добро пожаловать, Гость: Войти | Регистрация
    Форум
    Физика
        Сила Кориолиса
Отметить все сообщения как прочитанные   [ Помощь ]
» Добро пожаловать на форум "Физика" «

Переход к теме
<< Назад Вперед >>
Одна страница
Модераторы: duplex, Roman Osipov, gvk
  

ilovesky


Новичок

Мое первое сообщение на этом форуме )
Итак, интерисует меня сила Кориолиса.
Так как о функции Лагранжа я только слышал и не более, ее использование крайне затруднительно для меня. Поэтому я нашел вывод формулы для этой силы через координаты. Рассуждения там были следующие:
1) Есть две системы: подвижная и неподвижная, координаты точки соответственно x,y,z и x',y',z' (трехмерное пространство)
2) В любой момент t существуют такие числа a,b,c,x0, что x=x0+ax'+by'+cz'.
3) Дифференцируя по времени, получаем теорему о соотношении скоростей (абсолютная=относительная+переносная)
4) Еще раз дифференцируем, получаем помимо относительного и переносного ускорения еще добавочное. Умножаем доавочное ускорение на массу, получаем силу Кориолиса.

:::  Писал, руководясь книгой "Лекции по Теоретической механике Валле Пуссена",  хотя и в других источниках было где-то то же самое :::

Теперь вопрос:
Если я работаю в полярной системе координат, используя радиальную и трансверсальную скорости (если не ошибся в названиях). Как выводится в этом случае все "фиктивные" силы?
(Желательно по аналогии)

Всего сообщений: 1 | Присоединился: октябрь 2008 | Отправлено: 30 окт. 2008 14:24 | IP

Отправка ответа:
Имя пользователя   Вы зарегистрировались?
Пароль   Забыли пароль?
Сообщение

Использование HTML запрещено

Использование IkonCode разрешено

Смайлики разрешены

Опции отправки

Добавить подпись?
Получать ответы по e-mail?
Разрешить смайлики в этом сообщении?
Просмотреть сообщение перед отправкой? Да   Нет
 

Переход к теме
<< Назад Вперед >>
Одна страница

Форум работает на скрипте © Ikonboard.com